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Who am I?

I Bio:
I BSc in Signals and Systems (Automation) from ETF, Serbia
I MSc in ML from Aalto University, Finland.
I Teaching assistant at Aalto University, Finland.
I Research assistant at University of Helsinki, Finland.
I ML Engineer, AI researcher, Tech Lead, Team Leader

at Everseen for about 2.5 years.
I Lecturer and mentor at PSIML 2020. and 2021.

I AI Interests:
I Computer Vision, Representation Learning;
I Augmented Intelligence - how to use AI to extend our own?
I Causal Learning, Evolutionary Algos, Reinforcement; Learning;
I Neuroscience, Psychology, Philosophy.
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Everseen

I Applications of ML and CV in the retail industry

I Our products are deployed in 1000s of stores on 4 continents
I Belgrade R&D

I Product Switch
I Non-Scan
I Basket/Cart based loss
I Transaction analysis

I more at https://everseen.com/
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Motivation

I Goal: Learn the notion of similarity in computer-based systems

I Why?
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What is similarity?

I Similar (adj.) - Having a resemblance in appearance, character,
or quantity, without being identical - ”Having characteristics in
common”.

I ”Similarity between objects plays an important role in both hu-
man cognitive processes and artificial systems for recognition
and categorization.” Bellet et al. [2015]
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Applications

I Information Retrieval / Search engines
I text, images, music...

I Recommender systems
I products, content, services, people...

I Verification / Re-identification
I people, cars, objects...

I Unsupervised ML algorithms and Nearest Neighbor methods
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How do we measure similarity? (1/2)

I Objects represented as sets of characteristics (features).
I Similarity of objects as real-valued bivariate functions defined

on pairs of such sets (using norm, intersection, difference, etc.).

I Jaccard index
I SorensenDice coefficient
I Overlap coefficient
I Tversky index (a generalization of the SorensenDice coefficient

and the Tanimoto coefficient (aka Jaccard index))
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How do we measure similarity? (2/2)

I You want to buy a pet - a Sphynx cat. However, in the pet
store you have to choose between:
I a stuffed Sphynx cat looking exactly as you would like it,
I a Chihuahua looking very similar to the sphinx cat,
I a very different kind of a cat, say a Maine Coon.

I How would you choose the most similar pet?

I How would you quantify those similarities on a [0, 1] interval?
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Formulation (1/2)

I Goal: Learn the notion of similarity in computer-based systems.

I Qualifying similarity via a mapping from pairs of inputs to
{similar, dissimilar} or

I Quantifying via mapping to e.g. [−1, 1] or [0, 1] - higher for
more similar and lower for less similar.

I Proposition: Parametrize the mapping as a neural network and
learn the parameters to optimize for the desired outcome.
I Map objects to an embedding (feature) space E ⊆ Rn and use

predefined measures (e.g. Euclidean distance, Cosine similarity);
I Learn the similarity/distance measure on top of such embed-

dings.

I Problem: How to obtain labels?
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Formulation (2/2)

I Absolute similarity assessment is very difficult and unreliable for
humans - ”A and B are 0.83 similar”.

I Relative similarity assessment comes naturally:
I ”A and B are similar. C and D are dissimilar.” - Context?
I ”A and B are more similar than A and C”. A serves as a con-

textual anchor.
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Siamese Networks

Bromley et al. [1993] Taigman et al. [2014]
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Contrastive Loss (1/2)
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Contrastive Loss (2/2)

I Pairwise Loss - N2 pairs

I Context cannot be inferred from the pair at hand

I Wants to collapse objects belonging to same-class pairs
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Triplet Networks and Loss (1/3)

Chechik et al. [2010] Schroff et al. [2015]
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Triplet Networks and Loss (2/3)
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Triplet Networks and Loss (3/3)

I Pro: More fine grained (N3 vs N2)

I Pro: Context provided via the anchor object

I Con: Depends heavily on triplet mining strategies
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Literature Survey

I Survey - Kulis et al. [2012]

I Book - Bellet et al. [2015]

I Reality check - Musgrave et al. [2020]

I Github - pytorch-metric-learning
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Summary

I Assessing similarities is an important part of AI.

I Widely used in real-world applications.

I Similarity depends on context and relative similarities come
more naturally.

I Siamese and Triplet Networks as SOTA approaches.

I The field is still growing and contributions are welcome.
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